Sampling with SQL

Tom Moertel
blog.moertel.com

2024-08-23

Contents

Sampling without replacement: the A-ES algorithm in SQL . . . . . . 2
Numerical stability and other tweaks . . . . . . ... ... ....... 2
Does this algorithm actually work? . . . . . . ... ... .. ...... 3
Tricks for faster samples . . . . . . . ... ... ... .. ... 5
Adding determinism . . . ... .. ... o oL 6

Sampling with replacement . . . . . .. ... ... oL, 7

Example of sampling with replacement . . . . . . ... ... ... 10
Conclusion . . . . . . . . . i it e e 11
References . . . . . . . . . . . . . .. e 12

Sampling is one of the most powerful tools you can wield to extract meaning
from large datasets. It lets you reduce a massive pile of data into a small yet
representative dataset that’s fast and easy to use.

If you know how to take samples using SQL, the ubiquitous query language,
you’ll be able to take samples anywhere. No dataset will be beyond your reach!

In this post, we’ll look at some clever algorithms for taking samples. These
algorithms are fast and easily translated into SQL.

First, however, I’ll note that many database systems have some built-in support
for taking samples. For example, some SQL dialects support a TABLESAMPLE
clause. If your system has built-in support—and it does what you need—using
it will usually be your best option.

Often, though, the built-in support is limited to simple cases. Let’s consider
some realistic scenarios that are more challenging:

e We want to be able to take samples with and without replacement.

o We want to take weighted samples in which each item in the input dataset
is selected with probability in proportion to its corresponding weight.

e We want to support the full range of weights we might expect to see in a
FAANG-sized dataset, say between 0 to 10%° for frequency distributions



(e.g., clicks or impressions or RPC events) and between 0 to 1 with values
as small as 1072° for normalized probability distributions. In other words,
weights are non-negative numbers, possibly very large or very small.

o We want to take deterministic samples. This property lets us take repeatable
samples and, in some cases, helps query planners produce faster queries.

Sampling without replacement: the A-ES algorithm in SQL

In 2006, Pavlos S. Efraimidis and Paul G. Spirakis published a one-pass algorithm
for drawing a weighted random sample, without replacement, from a population
of weighted items. It’s quite simple:

Given a population V indexed by ¢ = 1...n and having weights w;:

1. For each v; in V, let u; = random(0,1) and k; = u;/“”.

2. Select the m items with the largest keys k;.
That algorithm has a straightforward implementation in SQL:

SELECT =*

FROM Population

WHERE weight > 0O

ORDER BY -LN(1.0 - RANDOM()) / weight
LIMIT 100 -- Sample size.

You'll note that we changed the ordering logic a bit. A straight translation would
have been

ORDER BY POW(RANDOM(), 1.0 / weight) DESC
Our translation
ORDER BY -LN(1.0 - RANDOM()) / weight

is more numerically stable and also helps to show the connection between the
algorithm and the fascinating theory of Poisson processes. This connection makes
it easier to understand how the algorithm works. More on that in a moment.

Numerical stability and other tweaks

First, the numerical stability claim. Assume that our SQL system uses IEEE
double-precision floating-point values under the hood. When the weights are
large, say on the order of w; = 10'7, it doesn’t matter what the random value u;
is. The corresponding sort key k; = u;/ “ will almost always be 1.0. Consider
the interval 0.01 < u; < 1, representing 99% of the possible random values u;.

This entire interval gets mapped to 1.0 when w; = 10'7:

# Python.

>>> w_i = 1el7

>>> math.pow(0.01, 1.0/w_i) == math.pow(1.0, 1.0/w_i) == 1.0
True


https://en.wikipedia.org/wiki/IEEE_754-1985#Double_precision
https://en.wikipedia.org/wiki/IEEE_754-1985#Double_precision

Likewise, when weights are small, say w; = 10717, the corresponding sort key
will almost always be zero. Consider the interval 0 < u; < 0.99, representing
99% of the possible random values u;:

>>> w_ i = le-17
>>> math.pow(0.0, 1.0/w_i) == math.pow(0.99, 1.0/w_i) == 0.0
True

For very large (or small) weights, then, the straightforward implementation
doesn’t work. The wanted sort ordering is destroyed when very large (or small)
powers cause what should be distinct sort keys to collapse into indistinguishable
fixed points.

Fortunately, logarithms are order-preserving transformations, so sorting by
ln(ug/ “") = In(u;)/w; produces the same ordering as sorting by ug/ “* when
we’re using mathematically pure real numbers. But the log-transformed version
is much more stable when using floating-point numbers. Distinct random inputs
u; now produce reliably distinct sort keys k;, even when the input weights w;

are very large or very small:

>>> [math.log(u_i) / 1el7 for u_i in (0.01, 0.010001, 0.99, 0.990001)]
[-4.605170185988091e-17, -4.605070190987759e-17,
-1.005033585350145e-19, -1.0049325753001471e-19]

>>> [math.log(u_i) / 1e-17 for u_i in (0.01, 0.010001, 0.99, 0.990001)]
[-4.605170185988091e+17, -4.605070190987758e+17,
-1005033585350145.0, -1004932575300147.1]

As a final tweak, we negate the sort keys so that instead of sorting by uil/ wi

descending, as in the original algorithm, we do an equivalent sort by — In(u;)/w;
ascending. Note the leading minus sign. The rationale for flipping the sign will
become apparent when we discuss Poisson processes in the next section.

One last numerical subtlety. Why do we generate random numbers with the
expression 1.0 - RANDOM() instead of just RANDOM() ? Since most implementa-
tions of RANDOM(), such as the PCG implementation used by DuckDB, return a
floating-point value in the semi-closed range [0, 1), they can theoretically return
zero. And we don’t want to take the logarithm of zero. So we instead use 1.0 -
RANDOM() to generate a random number in the semi-closed range (0, 1], which
excludes zero.

Does this algorithm actually work?

First, what do we mean by work? In this case, we’ll say that we want the
algorithm to produce samples that are equivalent to a succession of random
draws, each draw removing an item from the population, and each draw fair
with respect to the population that remains at the time of the draw. Because
the population grows slightly smaller with each draw, the draws in the sample
are not independent and identically distributed (iid). In practice, however, when


https://en.wikipedia.org/wiki/Monotonic_function
https://www.pcg-random.org/using-pcg-c-basic.html#generating-doubles
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables

your samples are very small compared to your population of interest, and your
weights are such that it’s unlikely that iid draws would draw the same item more
than once, you can generally pretend that the draws are iid and get away with it.
(When you can’t get away with it, you can use a reweighting scheme to extract
unbiased estimates anyway. This subject is worth its own post, so I won’t say
more here.)

Anyway, it’s not obvious that assigning a random number u; to every row %, then
sorting rows on — In(u;)/w;, and finally taking the top m rows is a recipe that
would result in a sample that has the wanted properties. But it does.

The clearest way to understand what’s going on is to first take a detour through
the fascinating theory of Poisson processes. In short, a Poisson process with
rate ) is a sequence of arrivals such that the times between succes-
sive arrivals are all independent, exponentially distributed random
variables with rate .

Poisson processes have some important (and useful!) properties:

1. They are memoryless. No matter what has previously happened, the time
until the next arrival from a Poisson process with rate A is exponentially
distributed with rate .

2. They can be merged. If you have two Poisson processes with rates A\; and
A2, the arrivals from both processes form a combined Poisson process with
rate A1 + A2. This holds for any number of processes.

3. They win races in proportion to their rates. In a race between the very next
arrival from a Poisson process with rate A\; and the very next arrival from
a Poisson process with rate A2, the probability that the first process will
win the race is A1 /(A1 + A2).

Now that we know the basics of Poisson processes, there’s just one more tidbit
we need:

o The uniform—exponential bridge. If X is a random variable having a uniform
distribution between zero and one, then —In(X)/X has an exponential
distribution with rate .

With the uniform—exponential bridge in mind, we can begin to see what the
algorithm is doing when it assigns every row a key k; = — In(u;)/w; and sorts the
population by that key. It’s running a race over all the rows in the population!
In this race, each row arrives at the finish line at a time that’s an exponentially
distributed random variable with a rate corresponding to the row’s weight w;.
The first m arrivals form the sample.

To prove that this race does the sampling that we want, we will show that it is
equivalent to a succession of one-row draws, each draw being fair with respect to
the population that remains at the time of the draw. Let the population’s total
weight be w, and consider an arbitrary row ¢ with weight w;. The algorithm
will assign it an exponentially distributed random variable with rate w;, which
corresponds to the very next arrival from a Poisson process with the same rate.


https://ocw.mit.edu/courses/6-262-discrete-stochastic-processes-spring-2011/3a19ce0e02d0008877351bfa24f3716a_MIT6_262S11_chap02.pdf
https://en.wikipedia.org/wiki/Exponential_distribution

Now consider all rows except i. They too correspond to Poisson processes with
rates equal to their weights. And we can merge them into a combined process
with rate >, w; = w — w;.

Now, using the rule about Poisson races, we know that row i, represented by a
process with rate A\; = w;, will win the race against those other rows, represented
by a combined process with rate Ay = w — w;, with probability

AL w; w;

A1+ A2 :wi-l-(w—wi) - w’

And since we chose row i arbitrarily, the same argument applies to all rows. Thus
every row’s probability of being drawn is equal to its weight in proportion to
the population’s total weight. This proves that running a “race of exponentials”
lets us perform one fair draw from a population.

But, after we’ve drawn one row, what’s left but a new, slightly smaller population?
And can’t we run a new race on this slightly smaller population to correctly
draw another row?

We can. And, since Poisson processes are memoryless, we do not have to generate
new arrival times to run this new race. We can reuse the existing arrival times
because the arrivals that have already happened have no effect on later arrivals.
Thus the next row we draw using the leftover arrival times will be another fair
draw.

We can repeat this argument to show that successive rows are chosen fairly in
relation to the population that remains at the time of each draw. Thus algorithm
A-ES selects a sample of size m by making m successive draws, each fair with
respect to its remaining population. And that’s the proof.

Tricks for faster samples

Most large analytical datasets will be stored in a column-oriented storage format,
such as Parquet. When reading from such datasets, you typically only have to
pay for the columns you read. (By “pay”, I mean wait for the query engine to do
its work, but if you’re running your query on some tech company’s cloud, you
may actually pay in currency too.)

For example, if your dataset contains a table having 100 columns but you need
only four of them, the query engine will usually only read those four columns.
In row-oriented data stores, by contrast, you’ll generally have to decode entire
rows, even if you only want four out of the 100 values in each row. Additionally,
most column-oriented stores support some kind of filter pushdown, allowing the
storage engine to skip rows when a filtering expression evaluates to false. These
two properties—pay for what you read and filter pushdown—are ones we can
exploit when taking samples.



Say we have a Population table with billions of rows and around 100 columns.
How can we efficiently take a weighted sample of 1000 rows?

We could use the basic sampling formulation, as discussed earlier:

SELECT *
FROM Population

WHERE weight > 0O

ORDER BY -LN(1.0 - RANDOM()) / weight
LIMIT 1000

But think about what the query engine must do to execute this query. It must
read and decode all 100 columns for all of those billions of rows so that it may
pass those rows into the sort/limit logic (typically implemented as a TOP_N
operation) to determine which rows to keep for the sample. Even though the
sample will keep only 0.00001% of those rows, you’ll have to pay to read the
entire Population table!

A much faster approach is to only read the columns we need to determine
which rows are in the sample. Say our table has a primary key pk that uniquely
identifies each row. The following variant on our sampling formulation returns
only the primary keys needed to identify the rows in the sample:

SELECT pk

FROM Population

WHERE weight > O

ORDER BY -LN(1.0 - RANDOM()) / weight
LIMIT 1000

This variant only forces the query engine to read two columns: pk and weight:
Yes, it still must read those two columns for the billions of rows in the table, but
those columns contain small values and can be scanned quickly. After all, that’s
what column-oriented stores are designed to do well. The point is that we’re not
paying to read about 100 additional columns whose values we’re just going to
throw away 99.99999% of the time.

One we have identified the rows in our sample, we can run a second query to
pull in the full set of wanted columns for just those rows.

Adding determinism

Our sampling algorithm depends on randomization. If we run our algorithm
twice with the same inputs, we’ll get different results each time. Often, that
nondeterminism is exactly what we want.

But sometimes it isn’t. Sometimes, it’s useful to be able to control the dice rolls
that the algorithm depends on. For example, sometimes it’s useful to be able to
repeat a sample. Or almost repeat a sample.

To allow us to control the nature of the randomization used when we take



samples, we must replace calls to RANDOM with a deterministic pseudorandom
function. One common approach is to hash a primary key and then map the
hashed value to a number in the range [0,1). The following DuckDB macro
pseudorandom_uniform will do exactly that:

-- Returns a pseudorandom fp64 number in the range [0, 1). The number
-- 1s determined by the given ‘key , ‘seed’ string, and integer “index .
CREATE MACRO pseudorandom_uniform(key, seed, index)
As (

(HASH(key || seed || index) >> 11) * POW(2.0, -53)
);

We can vary the seed and index parameters to generate independent random
values for the same key. For example, if I fix the seed to “demo-seed-20240601"
and generate random numbers for the key “keyl23” over the index values
1,2,...,10, I get 10 fresh random numbers:

SELECT
pseudorandom_uniform('key123', 'demo-seed-20240601', i) AS u_key123
FROM RANGE(1, 11) AS t(i);

Table 1: Ten random numbers for the key “key123” and seed “demo-
seed-20240601".

u_keyl23

0.9592606495318252
0.6309411348395693
0.5673207749533353
0.11182926321927167
0.3375806483238627
0.12881607107157678
0.6993372364353198
0.94031652266991
0.17893798791559323
0.6903126337753016

.

O © 00O Ui W+

—_

To take deterministic samples, we just replace calls to RANDOM() with calls to
our function pseudorandom_uniform().

Now that we can take deterministic samples, we can do even more useful things!
For example, we can take samples with replacement.

Sampling with replacement

Earlier, we proved that the A-ES algorithm allows us to take a sample without
replacement as a series of successive draws, each draw removing an item from the
population, and each draw fair with respect to the population that remains at



the time of the draw. But what if we wanted to take a sample with replacement?
A sample with replacement requires us to return each item to the population as
it is selected so that every selection is fair with respect to the original population,
and individual items may be selected more than once.

Can we efficiently implement sampling with replacement in SQL? Yes! But it’s a
little trickier. (I haven’t found this algorithm published anywhere; please let me
know if you have. It took me some effort to create, but I wouldn’t be surprised
if it’s already known.)

Think back to our correctness proof for the A-ES algorithm. For each row i
having a weight w;, the algorithm imagined a corresponding Poisson process with
rate \; = w; and represented the row by the very next arrival from that process.
That arrival would occur at time k; = —In(w;)/w;, where u; is a uniformly
distributed random number in the range (0, 1]. Then the algorithm sorted all
rows by their k; values and took the first m arrivals as the sample.

With one minor tweak to this algorithm, we can take a sample with replacement.
That tweak is to consider not just the very next arrival from each row’s Poisson
process but all arrivals. Let k;; denote the jth arrival from row 4’s process.
Since we know that in a Poisson process the times between successive arrivals
are exponentially distributed random variables, we can take the running sum
over interarrival times to give us the needed arrival times. That is, k; ; =
> _, —In(u;,)/w;, where u; , represents the rth uniformly distributed random
variable for row 1.

One minor problem with this tweaked algorithm is that a Poisson process
generates a theoretically infinite series of arrivals. Creating an infinite series for
each row and then sorting the arrivals from all of these series is intractable.

Fortunately, we can avoid this problem! Think about how the A-ES algorithm
for taking a sample without replacement relates to our proposed intractable
algorithm for taking a sample with replacement. We could describe the without
algorithm in terms of the with algorithm like so: Prepare to take a sample with
replacement, but then ignore all arrivals k; ; for j > 1; the remaining arrivals
must be of the form k; 1, where ¢ indicates the corresponding row. Then take
the first m of these remaining arrivals as your sample, as before.

Now think about going the other way, from having a without-replacement sample
and needing to construct a corresponding with-replacement sample. Let S be the
set of rows sampled without replacement. We know these rows were represented
by a corresponding set of arrival times k; ; for ¢ in S. We also know that, had
the sample been taken with replacement, the race would have included some
additional arrival times k; ; for j > 1 that could have displaced some of the
winning rows in S. But, crucially, we also know that if S, represents the set of
rows in the corresponding sample with replacement, then S, must be contained
within S. This claim follows from the fact that if any arrival k; ; for j > 1 does
displace a row among the first m arrivals, the j > 1 requirement implies that



the displacing row is a duplicate of some row ¢ that arrived earlier in the sample
at time k; 1; thus, displacement cannot introduce a new row from outside of S.

Therefore, if we have a sample without replacement, we can construct a sample
with replacement from its rows. We can ignore all other rows in the population.
This makes the problem much more approachable.

So now we can see an algorithm taking shape for taking a sample with replacement
of size m:

1. First, take an m-sized sample S without replacement using the efficient
A-ES algorithm.

2. For each sampled row ¢ in S, generate m arrivals k; ; for j =1,2,...,m
using the same pseudorandom universe that was used to generate S.

3. Take the first m arrivals as the sample.

You may have noticed that step 2 of this algorithm requires us to create m
arrivals for each of the m rows in S. This step thus requires O(m?) time. When
m is large, this time can be prohibitive.

Fortunately, we can use probability theory to reduce this cost to O(m). The idea
is that if row ¢ is expected to occur in the sample n; times, it is very unlikely
to occur more than ¢ - n; times when ¢ > 2. So we don’t need to generate a full
m arrivals for each row ¢ in S; we can get away with generating m; = [c - n;]
arrivals instead, for a suitably large ¢ to assuage our personal level of paranoia.

Here’s a sample implementation as a DuckDB macro:

-- Takes a weighted sample with replacement from a table.
-= Args:
-- population_table: The table to sample from. It must have a “pk’ column
- of unique primary keys and a ‘weight  column of non-negative weights.
-- seed: A string that determines the pseudorandom universe in which the
- sample is taken. Samples taken with distinct seeds are independent.
- If you wish to repeat a sample, reuse the sample's seed.
-- sample_size: The number of rows to include in the sample. This wvalue
- may be larger than the number of rows in the “population_table .
-- Returns a sample of rows from the “population_table .
CREATE MACRO sample_with_replacement (population_table, seed, sample_size)
AS TABLE (
WITH
-- First, take a sample *without* replacement of the wanted size.
SampleWithoutReplacement AS (
SELECT =*
FROM query_table(population_table: :varchar)
WHERE weight > O
ORDER BY -LN(pseudorandom_uniform(pk, seed, 1)) / weight



LIMIT sample_size
),
-- Compute the total weight over the sample.
SampleWithoutReplacementTotals AS (

SELECT SUM(weight) AS weight

FROM SampleWithoutReplacement
),
-- Generate a series of arrivals for each row in the sample.
SampleWithReplacementArrivals AS (

SELECT

S.*,

SUM(-LN(pseudorandom_uniform(pk, seed, trial_index)) / S.weight)

OVER (PARTITION BY pk ORDER BY trial_index)
AS rws_sort_key
FROM SampleWithoutReplacement AS S
CROSS JOIN SampleWithoutReplacementTotals AS T
CROSS JOIN
UNNEST(

RANGE(1, CAST(2.0 * sample_size * S.weight / T.weight + 2 AS INT)))

AS I(trial_index)
)

-— Form the sample *with* replacement from the first ‘sample_size’

SELECT * EXCLUDE (rws_sort_key)
FROM SampleWithReplacementArrivals
ORDER BY rws_sort_key
LIMIT sample_size

)

Example of sampling with replacement

As an example of when we might want to sample with replacement instead of
without, consider the following population table ThreeToOne that represents the
possible outcomes of tossing a biased coin:

Table 2: ThreeToOne population table.

pk weight
heads 3

tails 1

For this biased coin, “heads” is 3 times as likely as “tails” We can simulate
flipping this coin 10 times by sampling 10 rows from the ThreeToOne population
table with replacement:

SELECT pk
FROM sample_with_replacement (ThreeToOne, 'test-seed-20240601', 10);

10

arrivals.



Table 3: Results of drawing a 10-row sample with replacement from

ThreeToOne.
pk
heads
heads
heads
tails
tails
heads
heads
heads
tails
heads

In this sample, we got 7 heads and 3 tails. On average, we would expect about
7.5 heads in each sample of size 10, so our observed sample is close to our
expectations.

But maybe we just got lucky. As a stronger test of our SQL sampling logic, let’s
take 10,000 samples of size 40 and look at the count of heads across all of the
samples. We would expect this count to have a Binomial(size = 40, p = 3/4)
distribution. To compare our observed results to the expected distribution, I’ll
compute the empirical distribution of the results and plot that over the expected
distribution. As you can see in the figure below, the observed distribution closely
matches the expected distribution.

Conclusion

Sampling is a powerful tool. And with the SQL logic we’ve just discussed, you
can take fast, easy samples from virtually any dataset, no matter how large. And
you can take those samples with or without replacement.

What makes it all work is a clever connection to the theory of Poisson processes.
Those processes are memoryless and mergeable, and their arrivals win races in
proportion to their rates. These properties are exactly what we need to run races
that let us take samples.

Beyond what we’ve discussed in this article, there are further ways we can exploit
these properties. For example, as a performance optimization, we can predict
the arrival time ¢ of the final row in a sample. Then we can augment our SQL
sampling logic with a pushdown filter that eliminates population rows with
arrival times greater than c - ¢ for some constant c. This filtering happens before
ORDER/LIMIT processing and can greatly speed queries by eliminating more than
99.99% of rows early on, before they are even fully read on systems that support
“late materialization.”
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The observed distribution (black) agrees with the expected distribution (gold).

Based on 10,000 samples of size n = 40 from a 3:1 biased-coin distribution. We would expect the observed
'heads' counts to have a binomial distribution with size = 40 and a success probability 3/4.
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Figure 1: When we take 10,000 independent samples of size n = 40 from a 3:1
biased-coin distribution, we find that the count of “heads” over the samples
agrees with the expected Binomial(size = 40, p = 3/4) distribution.

But this article is already too long, so I'll stop here for now.
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